Методическая разработка урока по химии по теме «Многоатомные спирты»

Цели урока:

Обучающие:

- Показать изменение свойств соединений, с накоплением в их молекулах функциональных групп.
- Подчеркнуть взаимосвязь общего и особенного, переход количества в качество.
- Продолжить формирование и развитие у обучающихся практических умений в области химического эксперимента.
- Формирование навыков самостоятельной работы с информационными ресурсами.
- Решать проблемные ситуации.

Развивающие:

- Развивать у обучающихся интерес к предмету.
- Развивать логическое мышление обучающегося.
- Развивать зрительную память и наблюдательность.

Воспитательные:

Продолжить формирование научного мировоззрение на основе зависимости свойств веществ от их строения. Развитие универсальных учебных действий в составе личностных, регулятивных, познавательных, знаково-символических и коммуникативных действий

Оборудование урока:

- 1. На демонстрационном столе: глицерин, этанол, пропанол, натрий.
- 2. На столах обучающихся: набор реактивов для химического эксперимента.
- 3. Компьютер, интерактивная доска.

Тип урока – проблемный, комбинированный.

Структура урока

CIP.	уктура урока
 Повторение темы «Одноатомные 	1. Выборочная проверка домашнего задания.
спирты»	2. Повторение пройденного материала: работа
Гомологи и изомеры	с тестами
Свойства спиртов	3. Для повторения свойств этанола, лежащих
Способы их получения	в основе его применения, используется
Применение спиртов	таблица, в которой заполнена только левая часть, вызванный обучающийся использует
	её в качестве плана, записывая на доске
	уравнения реакций. План проецируется на
	интерактивную доску.
II. Изучение новой темы.	1. Решение задач на вывод молекулярной
1) Строение и название многоатомных	формулы двухатомного спирта (домашнее
спиртов	задание, вызванный обучающийся решает
	на доске)
	2. Параллельно с решением задачи,
	заполнение кроссворда с целью выявления
	темы урока.

2) Свойства многоатомных спиртов A) Физические свойства	 Проблемная ситуация Самостоятельная работа с учебником Лабораторные опыты
	4) Демонстрация на интерактивную доску
	сравнительной таблицы физических
	свойств в одноатомных и многоатомных
	спиртах.
	5) Выводы
Б) Химические свойства многоатомных	1. Беседа
спиртов.	2. Демонстрация опыта: взаимодействие
	глицерина с натрием
	3. Выводы
	4. Лабораторная работа, основанная на
	сравнительном действии этанола и
	глицерина на гидроксид меди, реакция
	горения.
	5. Выводы
3. Получение многоатомных спиртов	Самостоятельная работа с учебником
4. Применение многоатомных спиртов	Сообщение обучающихся
5. Закрепление	

Вступление к изучению нового материала.

1.После конкурса и его итогов вызвать к доске обучающегося решать задачу на нахождение молекулярной формулы вещества, которую он получил в качестве домашнего задания.

Задача: Найти формулу вещества по следующим данным: плотность вещества по водороду 31, массовые доли C - 38,7%, кислорода - 51,6%, водорода - 9,7%

Ответ: Молекулярная формула вещества С2Н6О2

Пока вызванный к доске обучающийся решает задачу, <u>предлагаю классу разминку</u>. Условия работы: правильно ответить на вопросы и найти в кроссворде тему нынешнего урока.

Кроссворд											
				1							
		2			1	1	1				
		-	3								
		4									
	5										
		6									
				7					•	•	
8								•			

- 1) Производные углеводородов в молекулах которых атомы водорода замещены гидроксильными группами образуют класс?
- 2) Как называются вещества с одинаковым составом молекул но разным строением и свойствами?
- 3) Мельчайшие частицы вещества.
- 4) Взаимодействие алканов с азотной кислотой называется реакцией?

- 5) Галогенопроизводное метана, которое долгое время применяли в медицине для наркоза?
- 6) К какому классу органических веществ относятся вещества, состоящие из углерода и водорода?
- 7) Назовите вещество: С₈H₁₈
- 8) Определите вид химической связи в Н₂О

Найденную в кроссворде тему урока «многоатомные спирты» записываю на доске, обучающиеся пишут в тетрадях.

Приступая к первому вопросу — строение и названия многоатомных спиртов — возвращаюсь к выведенной обучающимися формуле вещества: $C_2H_6O_2$

1) Предлагаю обучающемуся написать структурную формулу данного вещества и назвать его систематической номенклатуре:

Другое название данного спирта – этиленгликоль (гликос в переводе с греческого – означает сладкий)

Несмотря на то, что он сладкий, пробовать его на вкус нельзя.

- 2) Обратить внимание обучающихся на тот факт, что первый представитель гомологического ряда многоатомных спиртов начинается с двух атомов углерода, а не с одного.
- 3) <u>Подчеркнуть</u>, что наличие двух групп <u>OH</u> у одного углеродного атома придает данному веществу неустойчивый характер.
- 4) Примером тому является хорошо известная угольная кислота, которая существует только в водных растворах.
 Структурная формула кислоты доказывает вышеизложенное:
- 5) Продолжить изучение первого вопроса. <u>Вызвать</u> обучающегося к доске и предложить ему написать формулу трёхатомного спирта по аналогии с двухатомным и назвать его:

$$CH_2 - CH - CH_2$$
 | пропантриол или глицерин OH OH OH

Сообщение обучающегося «История глицерина»

6) Проблемная ситуация:

Является ли глицерин гомологом этиленгликоля.

Обучающиеся устанавливают, что вещества $C_2H_6O_2$ и $C_3H_8O_3$ не являются гомологами, т.к. между ними нет гомологической разницы (CH_2).

7) В качестве закрепления полученных знаний обучающиеся приводят формулы веществ, которые являются гомологами этандиола и глицерина.

8) Другие представители многоатомных спиртов. Сорбит и ароматический спирт. **Сообщение обучающегося о сорбите**

Физические свойства спиртов.

Ознакомление с физическими свойствами многоатомных спиртов происходит на основе опытов с глицерином.

1) Обучающиеся выполняют лабораторную работу

Инструкция к работе находится на столах обучающихся

Опыт 1. К 1 мл воды в пробирке прилейте равный объем глицерина, смесь взболтайте. Затем добавьте еще столько же глицерина.

Что можно сказать о растворимости его в воде?

Уч-ся делают вывод: глицерин хорошо растворим в воде.

Опыт 2. На лист фильтрованной бумаги нанести 2-3 капли глицерина и отдельно несколько капель воды. Наблюдайте, время от времени, какая жидкость быстрее испаряется.

Как объяснить результаты опыта?

- 1.В результате наблюдений обучающиеся видят, что быстрее испаряется вода, а не глицерин.
- 2. Как объяснить это свойство глицерина?
- 3. Ответ на этот вопрос обучающиеся находят в таблице «Физические свойства спиртов»
- 4. <u>Вывод:</u> Температура кипения глицерина слишком высокая, чтобы он мог испариться при комнатной температуре.
- 2)<u>Проблемная ситуация:</u> почему одноатомные спирты горькие, а многоатомные сладкие? Примером тому спирт этанол и глицерин. Сравнивая состав тех и других спиртов, уч-ся приходят к выводу, что сладость спиртам придают гидроксогруппы.
- 3)С возрастанием числа гидроксогрупп и водородных связей в молекулах многоатомных спиртов:
- а)возрастет сладость спиртов
- б)повышается температура кипения
- в)возрастет растворимость их в воде
- 4)Для справки: гексанол в воде не растворяется, а шестиатомный спирт сорбит имеет неограниченную растворимость.
- 5) Обучающиеся проводят лабораторный эксперимент.

В одну пробирку с 1мл воды прилить равный объем гексанола. В другую пробирку с водой поместить спирт сорбит, пробирки встряхнуть. Обучающиеся сравнивают растворимость спиртов в воде, делают соответствующий вывод.

6)В качестве закрепления вышеизложенного предложить обучающимся сравнительную таблицу физических свойств одноатомных и многоатомных спиртов

Физические свойства спиртов

Критерий	Одноатомные спирты	Многоатомные спирты

Химические свойства многоатомных спиртов:

1)горение

- 2)Подобно одноатомным спиртам многоатомные спирты взаимодействуют с натрием
- 3) Взаимодействие многоатомных спиртов с галогеноводородами
- 4)В отличие от одноатомных спиртов, многоатомные взаимодействуют с гидроксидами Ме, и в частности с гидроксидом меди.
- 5)Взаимодействие многоатомных спиртов с кислотами. Так при взаимодействии глицерина с азотной кислотой, образуется нитроглицерин сложный эфир азотной к-ты и глицерина.

В 1847 году итальянский химик А.Соберо, действуя на глицерин азотной кислотой, получил тяжелую бесцветную масляную жидкость, которая мгновенно взрывалась от трения и удара. Это был нитроглицерин. Во время крымской войны русский химик Н.Н. Зинин решил использовать это вещество для военных целей. Он привлек к работе 1853г. артиллерийского офицера В.Ф. Петрушевского, а затем к ним присоединился физик Б.С. Якоби. Подводные мины начинялись нитроглицерином и зажигались на расстоянии током. Взрыв был мощный, но часто нитроглицерин взрывался преждевременно даже от небольшого удара. Сделать «гремучее масло» менее опасным было не так просто. Идея была заманчивой: при температуре 200°С мгновенно протекает экзотермическая реакция, которая сопровождается выделением огромного кол-ва газов, происходит взрыв:

$$4C_3H_5(ONO_2)_3 \rightarrow 12CO_2\uparrow +6N_2\uparrow +O_2\uparrow +10H_2O$$

Как приручить нитроглицерин?

За решение той непростой задачи взялся шведский инженер, о нем мы поговорим на следующем уроке.

Получение многоатомных спиртов

- 1) обучающимся уже известен способ получения спиртов из галогенозамещенных углеводородов при нагревании с водой в присутствии щелочи.
- 2) Может ли этот способ распространяться на многоатомные спирты?
- 3) Вместе с обучающими записать уравнение реакции получения этиленгликоля

Чтобы сдвинуть равновесие вправо, выделяющую соляную кислоту нейтрализуют щелочью. Аналогично можно получить глицерин.

4) Наряду с синтетическими способами получения многоатомных спиртов, существует способ получения глицерина из жиров.

Применение многоатомных спиртов

- 1) Самостоятельная работа с учебником в классе краткая беседа.
- 2) Сообщения сведений из рубрики «Знаете ли вы, что...»
 - а) 36,4% водный раствор этиленгликоля замерзает при -20°C
 - b) 52,6% раствор при 40 ^OC

- с) 56% p-p только при -60° C
- d) Добавка глицерина к этиленгликолю удлиняет срок службы водяных насосов автомашин.
- 3) В качестве дополнения материала обучающийся проецирует на интерактивную доску слайды «Применения этиленгликоля и глицерина»

Рефлексия. Работа с тестами:

1) Спирт: $CH_2 - CH - CH_2 - CH_3$ является:

OH OH

А) Гомологом глицерина

Б) Гомологом метанола

В) Гомологом этандиола

Г) Членом другого ряда спиртов

2) Спирт: CH₃ – (CH₂)₃ – CH₂OH

А) Гомолог этандиола

Б) Гомолог этанола

В) Гомолог глицерина

Г) Непредельный спирт

- 3) Глицерин проявляет двойственные свойства реагируя с...
- а) кислородом и фтором
- б) калием и бромоводородом
- в) хлороводородом и водой
- г) натрием и литием
- 4) Пропанол и глицерин различают с помощью

А) Натрия

Б) Водорода

В) Гидроксида меди (II)

Г) Хлороводорода

Задание на дом.

Изучить п.21, с. 109 №4 письменно.